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Abstract: Let p(z) be a polynomial of degree n,with p(z) =
n∑

ν=0

aνz
ν . In this

paper, firstly, we prove a result for bounds in two different radii for the maximum
modulus of lacunary type of polynomials having all zeros outside a disk of given
radius. Next, we establish a result concerning the maximum modulus of polar
derivative of polynomial having all zeros inside a disk out of which some fixed
number of zeros are centred at origin. In particular case this result reduces into
ordinary derivative. Our results not only provide refinements of earlier proved re-
sults but also open new avenues for other results in the same field of research.
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1. Introduction and Statement of Results
If p(z) be a polynomial of degree n and p′(z) its derivative. Then according to

a well known result due to S. Bernstein [3], we have

max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|. (1.1)

The result is best possible and equality holds for p(z) = αzn, where |α| = 1.
If we restrict to the class of polynomials having no zero in |z| < 1, then the

bound in inequality (1.1) can be improved. In this direction, P. Erdös conjectured
and later Lax [9] verified that if p(z) ̸= 0 in |z| < 1, then

max
|z|=1

|p′(z)| ≤ n

2
max
|z|=1

|p(z)|. (1.2)

On the other hand if a polynomial p(z) of degree n has all its zeros in |z| ≤ 1.
Then it was shown by Turan [14], that

max
|z|=1

|p′(z)| ≥ n

2
max
|z|=1

|p(z)|. (1.3)

Thus in (1.2) as well as in (1.3) equality holds for those polynomials of degree n
which have all their zeros on |z| = 1. By simple deduction from the maximum
modulus principle (for instance see [10] or [12]) for a polynomial p(z) of degree n
and for every R ≥ 1, we have

max
|z|=R

|p(z)| ≤ Rnmax
|z|=1

|p(z)|. (1.4)

The result is best possible and extremal polynomial is p(z) = λzn, λ(̸= 0) is a
complex number. For the class of polynomials having no zeros in |z| < 1, the
inequality (1.4) is sharpened by Ankeny and Rivlin [1] as

max
|z|=R≥1

|p(z)| ≤ Rn + 1

2
max
|z|=1

|p(z)|. (1.5)

Corresponding inequalities under the same conditions as in inequalities (1.4) and
(1.5) with r ≤ 1 were proved by Zerrantonello and Varga [15] and Rivlin [16]
respectively.
For a polynomial p(z) of degree n, Dαp(z), the polar derivative of p(z) with respect
to the point α is defined as

Dαp(z) = np(z) + (α− z)p′(z).
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It is easy to see that Dαp(z) is a polynomial of degree at most n − 1 and that
Dαp(z) generalizes the ordinary derivative in the sense that

lim
α→∞

[
Dαp(z)

α

]
= p′(z).

For the polynomial p(z) of degree n having all its zeros in |z| < k, k > 0 and for
r ≤ k ≤ R, Jain [7] proved

M(p, r)

rn + krn−1
≥ M(p,R)

Rn + kRn−1
, (1.6)

where M(p,R) = max
|z|=R

|p(z)|. Here and hereafter we shall also mean M(p,R) =

max
|z|=R

|p(z)|. Inequality (1.6) is generalized by Keshtwal [8] for lacunary type of

polynomials, as following.

Theorem 1.1. [Keshtwal [8]] If p(z) = a0 +
n∑

j=µ

ajz
j is a polynomial of degree n,

having all its zeros in |z| > k, k > 1, then for r ≤ k ≤ R

M(p,R)

Rn−1(Rµ+1 + kµ+1)n|a0|+ µ|aµ|Rnkµ+1(Rµ−1 + kµ−1)

≤ M(p, r)

rn−1(rµ+1 + kµ+1)n|a0|+ µ|aµ|rnkµ+1(rµ−1 + kµ−1)
. (1.7)

The following result concerning polar derivative of polynomial is due to Govil
and Kumar [5].

Theorem 1.2. [Govil and Kumar [5]] If p(z) = zs(a0 + a1z
1 + a2z

2 + ... +
an−sz

n−s), 0 ≤ s ≤ n is polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1,
then for any complex number α with |α| ≥ k

max
|z|=1

|Dαp(z)| ≥ (|α| − k)

(
n+ s

1 + kn
+

|an−s|kn−s − |a0|
(1 + kn)(|an−s|kn−s + |a0|)

)
max
|z|=1

|p(z)|.

(1.8)

In this paper, firstly we are able to improve upon the Theorem 1.1 by proving
the following.

Theorem 1.3. If p(z) = a0 +
n∑

j=µ

ajz
j is a polynomial of degree n, having all its
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zeros in |z| > k, k > 1, then for r ≤ k ≤ R

M(p,R)

f(R, k)
≤ M(p, r)

f(r, k)
− (Rn − rn) (n|a0|kµ+1 + µ|aµ|rk2µ)

knf(R, k)(rµ+1 + kµ+1)n|a0|+ µ|aµ|(rµkµ+1 + rk2µ)
m(p, k),

(1.9)

where m = m(p, k) = min
|z|=k

|p(z)| and f(R, k) = Rn−1(Rµ+1+kµ+1)n|a0|+µ|aµ|Rnkµ+1

(Rµ−1+kµ−1) etc. Here and hereafter we shall also mean m = m(p, k) = min
|z|=k

|p(z)|.

Next, we improve upon the Theorem 1.2 as following.

Theorem 1.4. If p(z) = zs(a0 + a1z
1 + a2z

2 + ... + an−sz
n−s), 0 ≤ s ≤ n is

polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then for any complex
number α with |α| ≥ k

max
|z|=1

|Dαp(z)| ≥
(|α| − k)

1 + kn

(
(n+ s) +

|an−s|kn−s − |a0|
|an−s|kn−s + |a0|

){
max
|z|=1

|p(z)|+ kn−1

2kn
min
|z|=1

|p(z)|
}
.

(1.10)

If we divide both sides of inequality (1.10) by |α| and then let |α| → ∞ , then
we obtain the following corollary which is of independent interest too.

Corollary 1.1. If p(z) = zs(a0 + a1z
1 + a2z

2 + ... + an−sz
n−s), 0 ≤ s ≤ n is

polynomial of degree n having all its zeros in |z| ≤ k, k ≥ 1, then

max
|z|=1

|p′(z)| ≥ 1

1 + kn

(
(n+ s) +

|an−s|kn−s − |a0|
|an−s|kn−s + |a0|

){
max
|z|=1

|p(z)|+ kn−1

2kn
min
|z|=1

|p(z)|
}
.

(1.12)

Corollary 1.1 is an improvement of a result due to Govil and Kumar ([5], Corol-
lary 1.2).

2. Lemmas
To prove the main results, we need the following lemmas.

Lemma 2.1. [Govil, Rahman and Schmeisser [6]] If p(z) =
n∑

j=0

ajz
j is a polynomial

of degree n having no zeros in |z| ≤ k, k ≥ 1, then

max
|z|=1

|p′(z)| ≤ n
n|a0|+ k2|a1|

(1 + k2)n|a0|+ 2k2|a1|
max
|z|=1

|p(z)|. (2.1)

The result is best possible with extremal polynomial p(z) = (z + k)n.
Qazi [11] generalized the Lemma 2.1 and proved the following.
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Lemma 2.2. [Qazi [11]] If p(z) = a0 +
n∑

j=µ

ajz
j, 1 ≤ µ ≤ n is a polynomial of

degree n not vanishing in |z| ≤ k, k ≥ 1, then

max
|z|=1

|p′(z)| ≤ n
1 + µ

n
|aµ
a0
|

1 + kµ+1 + µ
n
|aµ
a0
|(kµ+1 + k2µ)

max
|z|=1

|p(z)|. (2.2)

Lemma 2.3. If p(z) = a0 +
n∑

j=µ

ajz
j, 1 ≤ µ ≤ n is a polynomial of degree n not

vanishing in |z| ≤ k, k ≥ 1, then

max
|z|=1

|p′(z)| ≤ n
n|a0|+ µ|aµ|kµ+1

(1 + kµ+1)n|a0|+ µ|aµ|(kµ+1 + k2µ)
∥ p ∥

− n

kn

[
1− n|a0|+ µ|aµ|kn+1

(1 + kµ+1)n|a0|+ µ|aµ|(kµ+1 + k2µ)

]
m, (2.3)

where ∥p∥ = max
|z|=1

|p(z)| and m = m(p, k) = min
|z|=k

|p(z)|.

Proof. Since p(z) does not vanish in |z| ≤ k, k ≥ 1 and |p(z)| ≥ m = min
|z|=k

|p(z)|,

therefore by Rouche’s theorem, the polynomial F (z) = p(z) + λ zn

kn
m, |λ| < 1, also

does not vanish in |z| ≤ k, k ≥ 1. On applying inequality (2.2) of Lemma 2.2 to
the polynomial F (z) = p(z) + λ zn

kn
m, we have

max
|z|=1

|F ′(z)| ≤ n
1 + µ

n
|aµ
a0
|

1 + kµ+1 + µ
n
|aµ
a0
|(kµ+1 + k2µ)

max
|z|=1

|F (z)|

or

max
|z|=1

|p′(z) + λn
zn−1

kn
m| ≤ n

1 + µ
n
|aµ
a0
|

1 + kµ+1 + µ
n
|aµ
a0
|(kµ+1 + k2µ)

max
|z|=1

|p(z) +mλ
zn

kn
|

≤ n
1 + µ

n
|aµ
a0
|

1 + kµ+1 + µ
n
|aµ
a0
|(kµ+1 + k2µ)

{max
|z|=1

|p(z)|+ m|λ|
kn

}.

(2.4)

Now, since λ is on our choice, choosing argument of λ in such a way that L.H.S. of
inequality (2.4) becomes

max
|z|=1

|p′(z) + λn
zn−1

kn
m| = max

|z|=1
|p′(z)|+ |λ|mn

kn
. (2.5)
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Inequality (2.4) in association with (2.5) gives

max
|z|=1

|p′(z)|+ |λ|mn

kn
≤ n

1 + µ
n
|aµ
a0
|

1 + kµ+1 + µ
n
|aµ
a0
|(kµ+1 + k2µ)

{max
|z|=1

|p(z)|+ m|λ|
kn

}. (2.6)

Inequality (2.6) on simplification gives

max
|z|=1

|p′(z)| ≤ n
n|a0|+ µ|aµ|kn+1

(1 + kµ+1)n|a0|+ µ|aµ|(kµ+1 + k2µ)
max
|z|=1

|p(z)|

− n|λ|
kn

[
1− n|a0|+ µ|aµ|kn+1

(1 + kµ+1)n|a0|+ µ|aµ|(kµ+1 + k2µ)

]
m. (2.7)

Finally, letting |λ| → 1 in (2.7), we get the desired inequality (2.3) and thus the
proof of the Lemma 2.3 is completed.

Lemma 2.4. [Aziz [2]] If p(z) is a polynomial of degree n which has all its zeros
in the disk |z| ≤ k, k ≥ 1, then

max
|z|=k

|p(z)| ≥ 2kn

1 + kn
max
|z|=1

|p(z)|. (2.8)

This result also independently proved by Govil and Kumar [3]. Further, Lemma
2.4 was improved by Dewan et.al.([4], Inequalty (20)) as

Lemma 2.5. If p(z) is a polynomial of degree n which has all its zeros in the disk
|z| ≤ k, k ≥ 1, then

max
|z|=k

|p(z)| ≥ 2kn

1 + kn
max
|z|=1

|p(z)|+ kn − 1

kn + 1
min
|z|=k

|p(z)|. (2.9)

3. Proof of the Main Theorems
Proof of Theorem 1.3. Let 0 < r ≤ k . Since p(z) has all its zeros in |z| ≥

k, k ≥ 1, therefore the polynomial T (z) = p(rz) has all its zeros in |z| ≥ k
r
, k
r
≥ 1.

Applying Lemma 2.3 to the polynomial T (z), we get

max
|z|=1

|T ′(z)| ≤ n
n|a0|+ µ|aµ|(kr )

µ+1

(1 + (k
r
)µ+1)n|a0|+ µ|aµ|

{
(k
r
)µ+1 + (k

r
)2µ

} max
|z|=1

|T (z)|

− n

(k
r
)n

[
1−

n|a0|+ µ|aµ|(kr )
n+1

(1 + (k
r
)µ+1)n|a0|+ µ|aµ|

{
(k
r
)µ+1 + (k

r
)2µ

}] min
|z|= k

r

|T (z)|
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which implies

max
|z|=1

r|p′(rz)| ≤ nAmax
|z|=1

|p(rz)| − nrn

kn
(1− A) min

|z|= k
r

|p(rz)|

or

max
|z|=r

|p′(z)| ≤ n

r
Amax

|z|=r
|p(z)| − nrn−1

kn
(1− A) min

|z|=k
|p(z)|, (3.1)

where

A =
n|a0|rµ+1 + µ|aµ|kµ+1rµ

(rµ+1 + kµ+1)n|a0|+ µ|aµ|(kµ+1rµ + rk2µ)
. (3.2)

As p′(z) is a polynomial of degree at most n − 1, then by maximum modulus
principle ([10], p. 158, problem III 269), we have

M(p′, t)

tn−1
≤ M(p′, r)

rn−1
, for t ≥ r. (3.3)

Combining inequalities (3.1) and (3.3), we have

M(p′, t) ≤ tn−1

rn−1

(
n

r
Amax

|z|=r
|p(z)| − nrn−1

kn
(1− A) min

|z|=k
|p(z)|

)
.

Now, we have for 0 ≤ θ < 2π

|p(Reiθ)− p(reiθ)| ≤
R∫

r

|p′(teiθ)|dt

≤
R∫

r

ntn−1

rn−1

(
A

r
max
|z|=r

|p(z)| − rn−1

kn
(1− A) min

|z|=k
|p(z)|

)
dt

= A
(Rn − rn)

rn
M(p, r)− (1− A)

(Rn − rn)

kn
m(p, k). (3.4)

From inequality (3.4) it implies that

|p(Reiθ)| ≤
[
1 +

(Rn − rn)

rn
A

]
M(p, r)− (Rn − rn)

kn
(1− A)m(p, k). (3.5)
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Substituting expression for A from (3.2) in (3.5) and after simplification together
with using the fact that R ≥ r, (3.5) reduces to

M(p, r) ≤
[
Rn−1(Rµ+1 + kµ+1)n|a0|+ µ|aµ|Rnkµ+1(Rµ−1 + kµ−1)

rn−1(rµ+1 + kµ+1)n|a0|+ µ|aµ|rnkµ+1(rµ−1 + kµ−1)

]
M(p, r)

−(Rn − rn)

kn

(
1− n|a0|rµ+1 + µ|aµ|kµ+1rµ

(rµ+1 + kµ+1)n|a0|+ µ|aµ|(kµ+1rµ + rk2µ)

)
m(p, k).

This is ultimately equivalent to inequality (1.9) and thus proof of the Theorem 1.3
is completed.
Proof of Theorem 1.4. The proof of the Theorem 1.4 runs parallel to the proof given
by Govil and Kumar (see [5] proof of Theorem 1.1). Here we apply the improved
Lemma 2.5 instead of Lemma 2.4. So here we skip the details.

4. Conclusion
In this paper, we are able to get inequalities that provide better bounds for max-

imum modulus of polynomial functions in different radii and also for the maximum
modulus of polar and ordinary derivatives of the polynomials.The limitation of our
results in this paper is that these do not give bound for the values of k ∈ (0, 1).
The scope of the bounds for k ∈ (0, 1) is still open and recommended for further
research.
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